New sensor detects ever smaller nanoparticles

Journal Reference:

  1. Larissa Kohler, Matthias Mader, Christian Kern, Martin Wegener, David Hunger. Tracking Brownian motion in three dimensions and characterization of individual nanoparticles using a fiber-based high-finesse microcavity. Nature Communications, 2021; 12 (1) DOI: 10.1038/s41467-021-26719-5

Resonator Makes Movements of Nanoparticles Visible

And not only that: “If a nanoparticle is located in water, it collides with water molecules that move in arbitrary directions due to thermal energy. These collisions cause the nanoparticle to move randomly. This Brownian motion can now also be detected,” the experts adds. “So far, it has been impossible for an optical resonator to trackthe motion of a nanoparticle in space. It was only possible to state whether or not the particle is located in the light field,” Kohler explains. In the novel fiber-based Fabry-Pérot resonator, highly reflecting mirrors are located on the ends of glass fibers. It allows us to derive the hydrodynamic radius of the particle, that is the thickness of the water surrounding the particle, from its three-dimensional movement. This is important, because this thickness changes the properties of the nanoparticle. “As a result of the hydrate shell, it is possible to detect nanoparticles that would have been too small without it,” Kohler says. Moreover, the hydrate shell around proteins or other biological nanoparticles might have an impact on biological processes.

Sensor Provides Insight into Biological Processes

A potential application of the resonator may be the detection of three-dimensional motion with high temporal resolution and characterization of optical properties of biological nanoparticles, such as proteins, DNA origami, or viruses. In this way, the sensor might provide insights into not yet understood biological processes. (mex)

We want to give thanks to the writer of this post for this incredible content

New sensor detects ever smaller nanoparticles

Red Hat Beauty